Search results for "Chemical thermodynamic"

showing 5 items of 5 documents

Towards highly accurate ab initio thermochemistry of larger systems: benzene.

2011

The high accuracy extrapolated ab initio thermochemistry (HEAT) protocol is applied to compute the total atomization energy (TAE) and the heat of formation of benzene. Large-scale coupled-cluster calculations with more than 1500 basis functions and 42 correlated electrons as well as zero-point energies based on full cubic and (semi)diagonal quartic force fields obtained with the coupled-cluster singles and doubles with perturbative treatment of the triples method and atomic natural orbital (ANO) triple- and quadruple-zeta basis sets are presented. The performance of modifications to the HEAT scheme and the scaling properties of its contributions with respect to the system size are investiga…

010304 chemical physicsChemistryAb initioGeneral Physics and AstronomyBasis function010402 general chemistry01 natural sciences7. Clean energyStandard enthalpy of formation0104 chemical sciencesChemical thermodynamicsAb initio quantum chemistry methodsQuartic function0103 physical sciencesThermochemistryPhysics::Chemical PhysicsPhysical and Theoretical ChemistryAtomic physicsScalingThe Journal of chemical physics
researchProduct

Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy). Part I: Volatile stocking, gas fluxing, and the shift from low-energy to highly ex…

2018

International audience; Basaltic magmas can transport and release large amounts of volatiles into the atmosphere, especially in subduction zones, where slab-derived fluids enrich the mantle wedge. Depending on magma volatile content, basaltic volcanoes thus display a wide spectrum of eruptive styles, from common Strombolian-type activity to Plinian events. Mt. Etna, in Sicily, is a typical basaltic volcano where the volatile control on such a variable activity can be investigated. Based on a melt inclusion study in products from Strombolian or lava-fountain activity to Plinian eruptions, here we show that for the same initial volatile content, different eruptive styles reflect variable dega…

Melt inclusion010504 meteorology & atmospheric sciencesExplosive materialMantle wedgeGeochemistryengineering.material010502 geochemistry & geophysics01 natural sciencesMicroliteGeochemistry and Petrology[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/VolcanologyBasaltic explosive volcanism0105 earth and related environmental sciencesMelt inclusionsBasaltgeographygeography.geographical_feature_categorySubductionMt. EtnaTotal volatilesChemical thermodynamicsGeologyTotal volatileStrombolian eruptionChemical thermodynamicVolcano13. Climate actionengineeringMelt inclusionsGeology
researchProduct

Chemical heterogeneities in the mantle: The equilibrium thermodynamic approach

2016

Abstract This study attempts to answer a simple and yet fundamental question in relation to our understanding of the chemical evolution of deep Earth and planetary interiors. Given two initially separate assemblages (lithologies) in chemical equilibrium can we predict the chemical and mineralogical compositions of the two assemblages when they are put together to form a new equilibrated system? Perhaps a common perception is that given sufficient time, the two assemblages will homogenize chemically and mineralogically, however from a chemical thermodynamic point of view, this is not the case. Certain petrological differences in terms of bulk composition, mineralogy and mineral abundance rem…

Peridotite010504 meteorology & atmospheric sciencesLithologyGeochemistryGeology010502 geochemistry & geophysics01 natural sciencesMantle (geology)Equilibrium thermodynamicChemical thermodynamicsGeochemistry and PetrologySufficient timeEclogiteChemical equilibriumGeology0105 earth and related environmental sciencesLithos
researchProduct

High-accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview

2008

Effects of increased basis-set size as well as a correlated treatment of the diagonal Born-Oppenheimer approximation are studied within the context of the high-accuracy extrapolated ab initio thermochemistry (HEAT) theoretical model chemistry. It is found that the addition of these ostensible improvements does little to increase the overall accuracy of HEAT for the determination of molecular atomization energies. Fortuitous cancellation of high-level effects is shown to give the overall HEAT strategy an accuracy that is, in fact, higher than most of its individual components. In addition, the issue of core-valence electron correlation separation is explored; it is found that approximate add…

Electronic correlationChemistryBorn–Oppenheimer approximationAb initioGeneral Physics and AstronomyThermodynamicsContext (language use)symbols.namesakeChemical thermodynamicsComputational chemistryAb initio quantum chemistry methodsThermochemistrysymbolsPhysical and Theoretical ChemistryThe Journal of Chemical Physics
researchProduct

A novel thermodynamic approach for the complexation study of toxic metal cations by a landfill leachate

2018

Landfill leachates can contaminate nearby aquifers. The hazards deriving from this contamination also depend on the chemical speciation of various contaminants. A novel approach is proposed here to face this problem from a chemical thermodynamics point of view. The complexing ability of the soluble fraction of a landfill leachate (collected from Bellolampo, Palermo, Italy) towards Pb2+, Cd2+ and Cu2+ has been investigated at T = 298.15 K in NaClaq at I = 0.1 mol dm−3. The soluble fraction of the landfill leachate was first characterized by different analytical techniques. Then, its acid–base properties were studied by ISE-H+ potentiometric titrations and modelled by the so-called diprotic-l…

Aqueous solutionChemistryPotentiometric titrationInorganic chemistry02 engineering and technologyGeneral Chemistry010501 environmental sciences021001 nanoscience & nanotechnology01 natural sciencesCatalysisMetalAnodic stripping voltammetryLandfill leachate sequestering ability complexation toxic metalsChemical thermodynamicsSequestrantvisual_artMaterials Chemistryvisual_art.visual_art_mediumTitrationSettore CHIM/01 - Chimica AnaliticaLeachate0210 nano-technology0105 earth and related environmental sciences
researchProduct